
mbin Documentation
Release 1.1.1

John Beaulaurier

Mar 02, 2021

Contents

1 Features 3

2 Installation 5

3 Contribute 7

4 Contents 9
4.1 mBin overview . 9
4.2 Installation . 10
4.3 Usage . 11
4.4 Contributing . 18

5 Search 21

i

ii

mbin Documentation, Release 1.1.1

mBin: a methylation-based binning framework for metagenomic SMRT sequencing reads

The mBin pipeline is designed to discover the unique signals of DNA methylation in metagenomic SMRT sequencing
reads and leverage them for organism binning of assembled contigs or unassembled reads. Because all cellular DNA
is modified by the same set of methyltransferases encoded in the genome, DNA methylation signals can be used for
binning not just chromosomal sequences, but also extrachromosomal mobile genetic elements like plasmids.

The pipeline consists of four routines:

1. buildcontrols: Gets unmethylated IPD values for motifs from whole-genome amplified (WGA) sequencing

2. filtermotifs: Identifies methylated motifs in native metagenomic sequencing

3. methylprofiles: Creates methylation profiles for sequences using specified motifs

4. mapfeatures: Visualizes landscape of methylation features across all sequences

Contents 1

mbin Documentation, Release 1.1.1

2 Contents

CHAPTER 1

Features

mBin can take as input either unaligned single molecule real-time (SMRT) reads from a PacBio instrument or contigs
assembled from SMRT reads. Methylation scores are calculated from individual inter-pulse duration (IPD) metrics
embedded in each sequencing read that record the polymerase kinetics during sequencing and indicate the presence or
absence of DNA methylation at the level of individual nucleotides.

By aggregating these IPD metrics across multiple sites for a motif and across multiple reads aligned to a contig, mBin
generates methylation scores for motifs and uses these to construct methylation profiles for reads and contigs. Methy-
lation profiles can then be used as epigenetic features for unsupervised metagenomic binning. mBin can also generate
methylation scores for contigs that are given binning assignments by other binning tools (with the –cross_cov_bins
option).

3

mbin Documentation, Release 1.1.1

4 Chapter 1. Features

CHAPTER 2

Installation

For a comprehensive guide on how to install mBin and its dependencies, see Installation

5

mbin Documentation, Release 1.1.1

6 Chapter 2. Installation

CHAPTER 3

Contribute

• Issue tracker: GitHub

• Source code: GitHub

7

https://github.com/fanglab/mbin/issues
https://github.com/fanglab/mbin

mbin Documentation, Release 1.1.1

8 Chapter 3. Contribute

CHAPTER 4

Contents

4.1 mBin overview

mBin: a methylation-based binning framework for metagenomic SMRT sequencing reads

The mBin pipeline is designed to discover the unique signals of DNA methylation in metagenomic SMRT sequencing
reads and leverage them for organism binning of assembled contigs or unassembled reads. Because all cellular DNA
is modified by the same set of methyltransferases encoded in the genome, DNA methylation signals can be used for
binning not just chromosomal sequences, but also extrachromosomal mobile genetic elements like plasmids.

The pipeline consists of four routines:

1. buildcontrols: Gets unmethylated IPD values for motifs from whole-genome amplified (WGA) sequencing

2. filtermotifs: Identifies methylated motifs in native metagenomic sequencing

3. methylprofiles: Creates methylation profiles for sequences using specified motifs

4. mapfeatures: Visualizes landscape of methylation features across all sequences

Please note: mbin was initially developed for PacBio RS II data. Currently it does not support bam files in the Sequel
system yet. We do plan to support Sequel data in the near future, and will make sure update this page as soon as an
update is available.

4.1.1 Documentation

For a comprehensive guide on how to install and run mBin, please see the full documentation.

9

https://pypi.python.org/pypi/mbin
https://travis-ci.org/fanglab/mbin
https://mbin.readthedocs.io/en/latest/?badge=latest
https://mbin.readthedocs.io/en/latest/

mbin Documentation, Release 1.1.1

4.1.2 Citations

Beaulaurier J, Zhu S, Deikus G, Mogno I, Zhang XS, Davis-Richardson A, Canepa R, Triplett E, Faith J, Sebra
R, Schadt EE, Fang G. Metagenomic binning and association of plasmids with bacterial host genomes using DNA
methylation. Nature Biotechnology 36, 61-69 (2018). doi:10.1038/nbt.4037.

4.1.3 Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

4.2 Installation

4.2.1 Fundamental dependencies

python v2.7.*
gcc
hdf5

4.2.2 Python packages

numpy>=1.7.1
pysam == 0.10.0
h5py >= 2.0.1
pbcore >= 0.9.4
scipy >= 0.12.0
biopython >= 1.6.1
matplotlib >= 1.5.0

All but Numpy will be installed automatically during the standard installation as described below. Numpy, however,
must be installed prior to mBin installation (see below):

4.2.3 Setting up virtualenv

mBin should be installed in a Python virtual environment using virtualenv, which creates a clean and isolated Python
environment in which to install packages and their dependencies.

Virtualenv can be installed using pip:

$ pip install virtualenv

Once installed, navigate to the directory where you would like to keep the virtual environment and create a virtual
environment called venv:

$ virtualenv venv

Finally, activate this virtual environment venv:

$. venv/bin/activate

Once activated, you are now operating inside the venv and should see the following on you command line:

10 Chapter 4. Contents

https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter-pypackage
https://virtualenv.pypa.io/en/stable/

mbin Documentation, Release 1.1.1

(venv)<COMMAND LINE>

4.2.4 Installing mBin

With the virtual environment activated, install mbin using pip:

$ pip install mbin

4.2.5 Installing t-SNE

In order to create 2-D maps of methylation (and other) features for binning using mapfeatures, we must install the
Barnes-Hut implementation of the t-SNE algorithm. Full details on the BH-tSNE algoritm and wrapper script can be
found here. First, we pull the repository from GitHub and enter the directory:

$ git clone https://github.com/lvdmaaten/bhtsne.git
$ cd bhtsne

Next we compile the source code to get the executable bh_tsne:

$ g++ sptree.cpp tsne.cpp tsne_main.cpp -o bh_tsne -O2

Once the executable bh_tsne is compiled, add this directory to your $PATH environmental variable:

$ export PATH=$PATH:`pwd`

If bh_tsne is accessible in the path, the following should list usage instructions for mapfeatures:

$ mapfeatures --help

4.3 Usage

4.3.1 Extract control IPDs from WGA sequencing with buildcontrols

Usage: buildcontrols [--help] [options] wga_aligned_reads.cmp.h5

Example:

buildcontrols -i --procs=4 --control_pkl_name=control_means.pkl wga_aligned_reads.cmp.
→˓h5

Options:
-h, --help Show this help message and exit
-d, --debug Increase verbosity of logging
-i, --info Add basic logging
--logFile=LOGFILE Write logging to file [log.controls]
--subreadlength_min=SUBREADLENGTH_MIN Minimum subread length to include for

→˓analysis [100]
--readlength_min=READLENGTH_MIN Minimum read length to include for analysis

→˓[100]
--min_kmer=MIN_KMER Minimum motif size to scan (contiguous

→˓motifs) [4]
(continues on next page)

4.3. Usage 11

https://github.com/lvdmaaten/bhtsne

mbin Documentation, Release 1.1.1

(continued from previous page)

--max_kmer=MAX_KMER Maximum motif size to scan (contiguous
→˓motifs) [6]
--no_bipartite Omit bipartite motifs [False]
--mod_bases=MOD_BASES String containing bases to query for mods.

→˓Changing this is not recommended ['A']
--minAcc=MINACC Min subread accuracy of read [0.8]
--minMapQV=MINMAPQV Min mapping QV of aligned read [240]
--procs=PROCS Number of cores to use [4]
--N_reads=N_READS Number of qualifying reads to include in

→˓analysis [1000000000]
--min_motif_count=MIN_MOTIF_COUNT Number of motif sites required in WGA data

→˓to be included in controls dictionary [10]
--control_pkl_name=CONTROL_PKL_NAME Filename to save control IPD data from WGA

→˓sequencing [control_ipds.pkl]

All mBin analyses require a one-time step of creating a set of control IPD values using SMRT data from whole-genome
amplified (WGA) sequencing. This WGA sequencing can be obtained from any bacterial genomic sequencing and
does not have to be metagenomic.

The control (unmethylated) IPD values for all motifs that will be queried during the process of motif discovery and
methylation profile construction. The IPD for each unmethylated motif is very dependant on the sequencing chemistry
used and therefore best results are obtained by ensuring that the same chemistry kit (e.g. P6-C4) is used for both the
WGA and native DNA sequencing runs.

This procedure collects control IPD information for all possible motifs in the defined query space as specified with the
options --min_kmer, --max_kmer, --bipart_first, --bipart_Ns, and --bipart_second. Bipartite
motifs describe those motifs (e.g. ACCTNNNNNCTT) that begin with a set of determinate bases (ACCT), followed
by a set of indeterminate bases (NNNNN), followed by a second set of determinate bases (CTT). Accomodating every
single possible bipartite motif configuration would cause the query motif space to balloon exponentially to a size that
is not feasible for analysis. Therefore, constraints are placed on the acceptable lengths of each of these individual
components of a bipartite motif using the options --bipart_first, --bipart_Ns, and --bipart_second.

This is a time- and resource-intensive process, but can be omitted for subsequent analyses once the control IPD values
are extracted. However, the control IPD values should be re-extracted from WGA sequencing data whenever the
sequencing chemistry is updated.

A WGA aligned_reads.cmp.h5 file containing SMRT read alignments is required for this step.

$ buildcontrols -i --procs=4 --control_pkl_name=control_means.pkl wga_aligned_reads.
→˓cmp.h5

This process can be expedited in three ways:

1) Increasing --procs

2) Using --N_reads to only use a subset of the aligned reads in the WGA aligned_reads.cmp.h5 file, rather than
using all aligned reads.

3) Using --no_bipartite to omit bipartite motifs (e.g. AGCNNNNNNGTCT) from the control dictionary,
only creating control values for contiguous motifs (e.g. CTGCAG). However, this will serious hamper the
ability to assess the full richness of methylated motifs in the native sequencing data.

The output of this step is a pickled file (called control_means.pkl in the above example) containing a dictionary of the
mean IPD values for all queried motifs in the WGA data. These can be manually inspected in a Python interactive
shell using the following commands:

>import pickle
>control_means = pickle.load(open("control_means.pkl", "rb"))

(continues on next page)

12 Chapter 4. Contents

https://docs.python.org/2/library/pickle.html

mbin Documentation, Release 1.1.1

(continued from previous page)

>for motif,ipd in control_means.iteritems():
> print motif, ipd

Which should produce something similar to the following:

TAAGGA-5 0.22476
GGCAAG-4 -1.08934782609
ATANNNNNNTGCA-2 -0.306076923077
CTGATC-3 0.344641025641
ATANNNNNNTGCA-0 1.19992307692
ATTCGG-0 0.000526315789474
GTCTA-4 0.151090909091
.....

It is important that the WGA sequencing data used for this step is of at least moderate depth and sequence complexity
in order to provide sufficient control data points across the full spectrum of possible motifs. In subsequent analyses,
any motifs lacking control IPD values will be discarded from the analysis, so try to include all motifs in the control
data if possible.

4.3.2 Detect methylated motifs with filtermotifs

Usage: filtermotifs [--help] [options] aligned_reads.cmp.h5

Examples:

Using a cmp.h5 file of aligned reads as input (recommended):
filtermotifs -i --procs=4 --contigs=reference.fasta --control_pkl_name=control_means.
→˓pkl aligned_reads.cmp.h5

Using a bas.h5 file of unaligned reads as input (not recommended):
filtermotifs -i --procs=4 --control_pkl_name=control_means.pkl m12345.bas.h5

Using a FOFN file of containing multiple files of bas.h5 unaligned reads as input
→˓(not recommended):
filtermotifs -i --procs=4 --control_pkl_name=control_means.pkl bas.h5.fofn

Options:
-h, --help Show this help message and exit
-d, --debug Increase verbosity of logging
-i, --info Add basic logging
--logFile=LOGFILE Write logging to file [log.controls]
--procs=PROCS Number of cores to use [4]
--contigs=CONTIGS Fasta file containing entries for the

→˓assembled contigs [None]
--control_pkl_name=CONTROL_PKL_NAME Filename of control IPD data from WGA

→˓sequencing, generated using buildcontrols
[control_ipds.pkl]

--motifs_fn=MOTIFS_FN Filename to save output filtered motifs
→˓[motifs.txt]
--N_reads=N_READS Number of reads to include for motif

→˓filtering [20000]
--tmp=TMP Directory where numerous temporary files

→˓will be written [filter_tmp]
--minAcc=MINACC Min subread accuracy of read [0.8]
--minMapQV=MINMAPQV Min mapping QV of aligned read [240]

(continues on next page)

4.3. Usage 13

mbin Documentation, Release 1.1.1

(continued from previous page)

--minReadScore=MINREADSCORE Min read score of an unaligned read [0.0]
--maxPausiness=MAXPAUSINESS Max pausiness value of an unaligned read

→˓[1000]
--subreadlength_min=SUBREADLENGTH_MIN Minimum subread length to include for

→˓analysis [100]
--readlength_min=READLENGTH_MIN Minimum read length to include for analysis

→˓[100]
--readlength_max=READLENGTH_MAX Maximum read length to include for analysis

→˓[10000000]
--minQV=MINQV If base has QV < minQV, do not include [0]
--min_kmer=MIN_KMER Minimum motif size to scan (contiguous

→˓motifs) [4]
--max_kmer=MAX_KMER Maximum motif size to scan (contiguous

→˓motifs) [6]
--no_bipartite Omit bipartite motifs [False]
--bipart_first=BIPART_FIRST Bipartite motif configuration: acceptable

→˓length of first determinate component
(comma-separated string of integers) [3,4]

--bipart_Ns=BIPART_NS Bipartite motif configuration: acceptable
→˓length of middle indeterminate component

(comma-separated string of integers) [5,6]
--bipart_second=BIPART_SECOND Bipartite motif configuration: acceptable

→˓length of second determinate component
(comma-separated string of integers) [3,4]

--mod_bases=MOD_BASES String containing bases to query for mods ['A
→˓']
--minMotifIPD=MINMOTIFIPD Min motif contig IPD for inclusion of motif

→˓in final set [1.7]
--min_motif_reads=MIN_MOTIF_READS Min number of reads with motif hits to keep

→˓for motif filtering (only if using
unaligned reads as input) [20]

--min_motif_N=MIN_MOTIF_N Min number of motif IPD values required to
→˓keep for motif filtering [20]
--cross_cov_bins=CROSS_COV_BINS Path to file containing binning results from

→˓CONCOCT. Will use to improve motif
discovery. Only works with contig-level

→˓analysis (cmp.h5 input) inputs. File format
should be '<contig_name>,<bin_id>' [None]

After the control IPD values have been tabulated and stored, methylated motifs can then detected in the HDF5 files of
native, metagenomic sequencing data. Both aligned reads (cmp.h5) and unaligned reads (bas.h5 or FOFN containing
multiple bas.h5 files) are supported as input, but the use of aligned reads is strongly recommended for motif filtering.
Unaligned reads contain significant sequencing errors that introduce noise into the IPD signals for motifs, making it
difficult to detect truly methylated motifs from unaligned reads.

filtermotifs -i --procs=4 --contigs=reference.fasta --control_pkl_name=control_means.
→˓pkl native_aligned_reads.cmp.h5

Unless otherwise specified (using --min_kmer, --max_kmer, --bipart_first, --bipart_Ns,
--bipart_second, or --no_bipartite options), this procedure starts with motifs for which control data exists
(--control_pkl_name) and discards all motifs that do not have a methylation score (native IPD - control IPD)
greater than the value defined by --minMotifIPD.

The original query space of motifs is very large and can include several hundred thousand motifs if bipartite motifs are
included (recommended). To ease computational demands for storing IPD data for all motifs in the query space, only
a subset of reads (--N_reads) are examined from the input HDF5 files. This value of --N_reads can be modified
according to available computational resources and acceptable running time.

14 Chapter 4. Contents

mbin Documentation, Release 1.1.1

The filtered motifs are written to the output file specified by --motifs_fn. Motifs are listed with the sequence
string, followed by the 0-based index of the methylated base. For example, GATC-1 indicates that the A position in the
motif is methylated. This --motifs_fn output file serves as input to methylprofiles, which constructs methylation
profiles across the filtered motifs.

4.3.3 Build methylation profiles with methylprofiles

Usage: methylprofiles [--help] [options] input_hdf5 motifs.txt

Example:

Using a cmp.h5 file of aligned reads as input:
methylprofiles -i --procs=4 --control_pkl_name=control_means.pkl --contigs=reference.
→˓fasta aligned_reads.cmp.h5 motifs.txt

Using a bas.h5 file of unaligned reads as input:
methylprofiles -i --procs=4 --control_pkl_name=control_means.pkl m12345.bas.h5

Using a FOFN file of containing multiple files of bas.h5 unaligned reads as input:
methylprofiles -i --procs=4 --control_pkl_name=control_means.pkl bas.h5.fofn

Options:
-h, --help show this help message and exit
-d, --debug Increase verbosity of logging
-i, --info Add basic logging
--logFile=LOGFILE Write logging to file [log.controls]
--prefix=PREFIX Prefix to use for output files [None]
--tmp=TMP Directory where numerous temporary files

→˓will be written [profiles_tmp]
--contigs=CONTIGS Fasta file containing entries for the

→˓assembled contigs [None]
--minReadScore=MINREADSCORE Min read score of an unaligned read [0.0]
--maxPausiness=MAXPAUSINESS Max pausiness value of an unaligned read

→˓[1000]
--minQV=MINQV If base has QV < minQV, do not include [0]
--subreadlength_min=SUBREADLENGTH_MIN Minimum subread length to include for

→˓analysis [100]
--readlength_min=READLENGTH_MIN Minimum read length to include for analysis

→˓[100]
--minContigLength=MINCONTIGLENGTH Min length of contig to consider [10000]
--comp_kmer=COMP_KMER Kmer size to use for sequence composition

→˓measurements [5]
--aligned_read_barcodes Also output features for individual aligned

→˓reads, not just
contigs (requires cmp.h5 input) [False]

--minAcc=MINACC Min subread accuracy of read [0.8]
--minMapQV=MINMAPQV Min mapping QV of aligned read [240]
--procs=PROCS Number of processors to use [4]
--N_reads=N_READS Number of qualifying reads to include (from

→˓each bas.h5 if input is FOFN
of bas.h5 files) in analysis [1000000000]

--control_pkl_name=CONTROL_PKL_NAME Filename to save control IPD data from WGA
→˓sequencing [control_ipds.pkl]
--subtract_control=SUBTRACT_CONTROL Subtract control IPDs in final calculations

→˓[True]
--cross_cov_bins=CROSS_COV_BINS Path to file containing binning results

→˓from CONCOCT. Will use to improve (continues on next page)

4.3. Usage 15

mbin Documentation, Release 1.1.1

(continued from previous page)

motif discovery. Only works with contig-
→˓level analysis (cmp.h5 input) inputs.

File format should be '<contig_name>,<bin_
→˓id>' [None]

methylprofiles compiles the methylation profiles across the motifs specified in the arguments. The methylation profiles
can be constructed using either native contigs (*.cmp.h5) or unaligned reads (*.bas.h5), the latter of which can be
supplied as a single bas.h5 file or a FOFN containing multiple *.bas.h5 files (each *bas.h5 file on a new line).

The output consists of three separate files containing methylation features, as well as other relevant features for bin-
ning:

1. Methylation features: <prefix>_<seq>_methyl_features.txt

• Column 1: <seq> id

• Column 2: <seq> length

• Columns 3-M: Methylation scores (for M motifs)

2. Motif counts: <prefix>_<seq>_motif_counts.txt

• Column 1: <seq> id

• Column 2: <seq> length

• Columns 3-M: Motif counts (for M motifs)

3. Alternative features: <prefix>_<seq>_other_features.txt

• Column 1: <seq> id

• Column 2: <seq> length

• For dtype = read or align:

– Columns 3-N: k-mer frequencies (for N k-mers)

• For dtype = contig:

– Column 3: Contig coverage

– Columns 4-N: k-mer frequencies (for N k-mers)

Where <prefix> is defined by --prefix and <seq> is the sequence data type: contig, align, or read. When inputting
*.cmp.h5 reads for methylation profiling, methylprofiles will always generate contig level features and will optionally
generate align level features for the reads comprising each contig (using --aligned_read_barcodes). When
*.bas.h5 reads are input, only read level features will be output.

For example, the following command with generate methylation (and other) profiles for a set of contigs contained in
aligned_reads.cmp.h5:

methylprofiles -i --procs=4 --prefix=test --control_pkl_name=control_means.pkl --
→˓contigs=reference.fasta aligned_reads.cmp.h5 motifs.txt

These profiles will be contained in the following output files:

1. test_contig_methyl_features.txt

2. test_contig_motif_counts.txt

3. test_contig_other_features.txt

16 Chapter 4. Contents

mbin Documentation, Release 1.1.1

4.3.4 Visualize feature landscape with mapfeatures

Usage: mapfeatures [--help] [options] <SEQ>_methyl_features.txt <SEQ>_other_features.
→˓txt

Examples:

mapfeatures -i --labels=<LABELS.txt> --size_markers contig_methyl_features.txt contig_
→˓other_features.txt

mapfeatures -i --labels=<LABELS.txt> --l_min=500 align_methyl_features.txt align_
→˓other_features.txt

mapfeatures -i --l_min=10000 --n_seqs=1000 read_methyl_features.txt read_other_
→˓features.txt

Options:
-h, --help Show this help message and exit
-d, --debug Increase verbosity of logging
-i, --info Add basic logging
--logFile=LOGFILE Write logging to file [log.controls]
--prefix=PREFIX Prefix to use for output files [None]
--size_markers Adjust marker size in plot according to sequence length

→˓[False]
--dim_reduce=DIM_REDUCE Dimensionality reduction algorithm to apply (bhtsne or

→˓pca) [bhtsne]
--labels=LABELS Tab-delimited file (no header) of sequence labels (seq_

→˓name\tlabel_name) [None]
--l_min=L_MIN Minimum read length to include for analysis [0]
--n_seqs=N_SEQS Number of sequences to subsample [all]
--n_dims=N_DIMS Number of dimensions to reduce to for visualization (only

→˓n_dims=2 will be plotted) [2]
--n_iters=N_ITERS Number of iterations to use for BH-tSNE [500]

mapfeatures visualizes the landscape of high-dimensional sequence features using the Barnes Hut approximation
of t-SNE (PCA support coming soon). The sequence features that are output from methylprofiles are often high-
dimensional (>3D), making it difficult to visualize the sequences. To ease this visualization for resolution of discrete
sequence clusters in the feature space, t-SNE is used to reduce the dimensionality of the methylation, composition, and
coverage features to 2D. The resulting 2D maps, which can be overlaid with sequence annotation labels (generated
with Kraken, for instance), often reveals sequence clustering in the 2D feature space representing distinct taxonomical
groups for binning.

Two files from methylprofiles serve as input to mapfeatures: <prefix>_<seq>_methyl_features.txt and
<prefix>_<seq>_other_features.txt, which contain the high-dimensional methylation score features and
coverage & composition features, respectively. As before, <prefix> is defined by --prefix and <seq> is the se-
quence data type: contig, align, or read.

For example, the command:

mapfeatures -i --labels=<LABELS.txt> --size_markers contig_methyl_features.txt contig_
→˓other_features.txt

Will generate three 2D t-SNE maps representing the contig feature space:

1. Methylation t-SNE map: contig_methyl_features.bhtsne.png

2. Composition t-SNE map: contig_other_features.comp.bhtsne.png

3. Coverage+composition t-SNE map: contig_other_features.covcomp.bhtsne.png

4.3. Usage 17

https://ccb.jhu.edu/software/kraken/

mbin Documentation, Release 1.1.1

Each file has an accompanying tab-delimited *.txt file containing the 2D coordinates from each t-SNE map that can be
used for additional plotting purposes by the user. The file supplied to --labels must contain tab-delimited sequence
labels for all sequences listed in the first column of the <seq>_methyl_features.txt and <seq>_other_features.txt files
that are output from methylprofiles. Any sequences lacking annotation must be included using the label ‘Unlabeled’,
for example:

contig_1 Bacteroides
contig_2 Clostridium
contig_4 Escherichia
contig_5 Bacteroides
contig_6 Unlabeled

4.4 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

4.4.1 Types of Contributions

Report Bugs

Report bugs at https://github.com/fanglab/mbin/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

Write Documentation

mbin could always use more documentation, whether as part of the official mbin docs, in docstrings, or even on the
web in blog posts, articles, and such.

18 Chapter 4. Contents

https://github.com/fanglab/mbin/issues

mbin Documentation, Release 1.1.1

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/fanglab/mbin/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

4.4.2 Get Started!

Ready to contribute? Here’s how to set up mbin for local development.

1. Fork the mbin repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/mbin.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv mbin
$ cd mbin/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 mbin tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

4.4.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

4.4. Contributing 19

https://github.com/fanglab/mbin/issues

mbin Documentation, Release 1.1.1

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check https://travis-ci.org/
fanglab/mbin/pull_requests and make sure that the tests pass for all supported Python versions.

4.4.4 Tips

To run a subset of tests:

$ python -m unittest tests.test_mbin

20 Chapter 4. Contents

https://travis-ci.org/fanglab/mbin/pull_requests
https://travis-ci.org/fanglab/mbin/pull_requests

CHAPTER 5

Search

• search

21

	Features
	Installation
	Contribute
	Contents
	mBin overview
	Installation
	Usage
	Contributing

	Search

