

mBin documentation

mBin: a methylation-based binning framework for metagenomic SMRT sequencing reads

The mBin pipeline is designed to discover the unique signals of DNA methylation in metagenomic SMRT sequencing reads and leverage them for organism binning of assembled contigs or unassembled reads. Because all cellular DNA is modified by the same set of methyltransferases encoded in the genome, DNA methylation signals can be used for binning not just chromosomal sequences, but also extrachromosomal mobile genetic elements like plasmids.

The pipeline consists of four routines:

	buildcontrols: Gets unmethylated IPD values for motifs from whole-genome amplified (WGA) sequencing

	filtermotifs: Identifies methylated motifs in native metagenomic sequencing

	methylprofiles: Creates methylation profiles for sequences using specified motifs

	mapfeatures: Visualizes landscape of methylation features across all sequences

Features

mBin can take as input either unaligned single molecule real-time (SMRT) reads from a PacBio instrument or contigs assembled from SMRT reads. Methylation scores are calculated from individual inter-pulse duration (IPD) metrics embedded in each sequencing read that record the polymerase kinetics during sequencing and indicate the presence or absence of DNA methylation at the level of individual nucleotides.

By aggregating these IPD metrics across multiple sites for a motif and across multiple reads aligned to a contig, mBin generates methylation scores for motifs and uses these to construct methylation profiles for reads and contigs. Methylation profiles can then be used as epigenetic features for unsupervised metagenomic binning. mBin can also generate methylation scores for contigs that are given binning assignments by other binning tools (with the –cross_cov_bins option).

Installation

For a comprehensive guide on how to install mBin and its dependencies, see Installation

Contribute

	Issue tracker: GitHub [https://github.com/fanglab/mbin/issues]

	Source code: GitHub [https://github.com/fanglab/mbin]

Contents

	mBin overview
	Documentation

	Citations

	Credits

	Installation
	Fundamental dependencies

	Python packages

	Setting up virtualenv

	Installing mBin

	Installing t-SNE

	Usage
	Extract control IPDs from WGA sequencing with buildcontrols

	Detect methylated motifs with filtermotifs

	Build methylation profiles with methylprofiles

	Visualize feature landscape with mapfeatures

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

Search

	Search Page

mBin overview

[image: _images/mbin.svg]
 [https://pypi.python.org/pypi/mbin][image: _images/mbin1.svg]
 [https://travis-ci.org/fanglab/mbin][image: Documentation Status]
 [https://mbin.readthedocs.io/en/latest/?badge=latest]mBin: a methylation-based binning framework for metagenomic SMRT sequencing reads

The mBin pipeline is designed to discover the unique signals of DNA methylation in metagenomic SMRT sequencing reads and leverage them for organism binning of assembled contigs or unassembled reads. Because all cellular DNA is modified by the same set of methyltransferases encoded in the genome, DNA methylation signals can be used for binning not just chromosomal sequences, but also extrachromosomal mobile genetic elements like plasmids.

The pipeline consists of four routines:

	buildcontrols: Gets unmethylated IPD values for motifs from whole-genome amplified (WGA) sequencing

	filtermotifs: Identifies methylated motifs in native metagenomic sequencing

	methylprofiles: Creates methylation profiles for sequences using specified motifs

	mapfeatures: Visualizes landscape of methylation features across all sequences

Documentation

For a comprehensive guide on how to install and run mBin, please see the full documentation [https://mbin.readthedocs.io/en/latest/].

Citations

Beaulaurier J, Zhu S, Deikus G, Mogno I, Zhang XS, Davis-Richardson A, Canepa R, Triplett E, Faith J, Sebra R, Schadt EE, Fang G. Metagenomic binning and association of plasmids with bacterial host genomes using DNA methylation. Nature Biotechnology 36, 61-69 (2018). doi:10.1038/nbt.4037.

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Fundamental dependencies

python v2.7.*
gcc
hdf5

Python packages

numpy>=1.7.1
pysam == 0.10.0
h5py >= 2.0.1
pbcore >= 0.9.4
scipy >= 0.12.0
biopython >= 1.6.1
matplotlib >= 1.5.0

All but Numpy will be installed automatically during the standard installation as described below. Numpy, however, must be installed prior to mBin installation (see below):

Setting up virtualenv

mBin should be installed in a Python virtual environment using virtualenv [https://virtualenv.pypa.io/en/stable/], which creates a clean and isolated Python environment in which to install packages and their dependencies.

Virtualenv can be installed using pip:

$ pip install virtualenv

Once installed, navigate to the directory where you would like to keep the virtual environment and create a virtual environment called venv:

$ virtualenv venv

Finally, activate this virtual environment venv:

$. venv/bin/activate

Once activated, you are now operating inside the venv and should see the following on you command line:

(venv)<COMMAND LINE>

Installing mBin

With the virtual environment activated, install mbin using pip:

$ pip install mbin

Installing t-SNE

In order to create 2-D maps of methylation (and other) features for binning using mapfeatures, we must install the Barnes-Hut implementation of the t-SNE algorithm. Full details on the BH-tSNE algoritm and wrapper script can be found here [https://github.com/lvdmaaten/bhtsne]. First, we pull the repository from GitHub and enter the directory:

$ git clone https://github.com/lvdmaaten/bhtsne.git
$ cd bhtsne

Next we compile the source code to get the executable bh_tsne:

$ g++ sptree.cpp tsne.cpp tsne_main.cpp -o bh_tsne -O2

Once the executable bh_tsne is compiled, add this directory to your $PATH environmental variable:

$ export PATH=$PATH:`pwd`

If bh_tsne is accessible in the path, the following should list usage instructions for mapfeatures:

$ mapfeatures --help

Usage

Extract control IPDs from WGA sequencing with buildcontrols

Usage: buildcontrols [--help] [options] wga_aligned_reads.cmp.h5

Example:

buildcontrols -i --procs=4 --control_pkl_name=control_means.pkl wga_aligned_reads.cmp.h5

Options:
 -h, --help Show this help message and exit
 -d, --debug Increase verbosity of logging
 -i, --info Add basic logging
 --logFile=LOGFILE Write logging to file [log.controls]
 --subreadlength_min=SUBREADLENGTH_MIN Minimum subread length to include for analysis [100]
 --readlength_min=READLENGTH_MIN Minimum read length to include for analysis [100]
 --min_kmer=MIN_KMER Minimum motif size to scan (contiguous motifs) [4]
 --max_kmer=MAX_KMER Maximum motif size to scan (contiguous motifs) [6]
 --no_bipartite Omit bipartite motifs [False]
 --mod_bases=MOD_BASES String containing bases to query for mods. Changing this is not recommended ['A']
 --minAcc=MINACC Min subread accuracy of read [0.8]
 --minMapQV=MINMAPQV Min mapping QV of aligned read [240]
 --procs=PROCS Number of cores to use [4]
 --N_reads=N_READS Number of qualifying reads to include in analysis [1000000000]
 --min_motif_count=MIN_MOTIF_COUNT Number of motif sites required in WGA data to be included in controls dictionary [10]
 --control_pkl_name=CONTROL_PKL_NAME Filename to save control IPD data from WGA sequencing [control_ipds.pkl]

All mBin analyses require a one-time step of creating a set of control IPD values using SMRT data from whole-genome
amplified (WGA) sequencing. This WGA sequencing can be obtained from any bacterial genomic sequencing and does not have to be metagenomic.

The control (unmethylated) IPD values for all motifs that will be queried during the process of motif discovery and methylation profile construction. The IPD for each unmethylated motif is very dependant on the sequencing chemistry used and therefore best results are obtained by ensuring that the same chemistry kit (e.g. P6-C4) is used for both the WGA and native DNA sequencing runs.

This procedure collects control IPD information for all possible motifs in the defined query space as specified with the options --min_kmer, --max_kmer, --bipart_first, --bipart_Ns, and --bipart_second. Bipartite motifs describe those motifs (e.g. ACCTNNNNNCTT) that begin with a set of determinate bases (ACCT), followed by a set of indeterminate bases (NNNNN), followed by a second set of determinate bases (CTT). Accomodating every single possible bipartite motif configuration would cause the query motif space to balloon exponentially to a size that is not feasible for analysis. Therefore, constraints are placed on the acceptable lengths of each of these individual components of a bipartite motif using the options --bipart_first, --bipart_Ns, and --bipart_second.

This is a time- and resource-intensive process, but can be omitted for subsequent analyses once the control IPD values are extracted. However, the control IPD values should be re-extracted from WGA sequencing data whenever the sequencing chemistry is updated.

A WGA aligned_reads.cmp.h5 file containing SMRT read alignments is required for this step.

$ buildcontrols -i --procs=4 --control_pkl_name=control_means.pkl wga_aligned_reads.cmp.h5

This process can be expedited in three ways:

	Increasing --procs

	Using --N_reads to only use a subset of the aligned reads in the WGA aligned_reads.cmp.h5 file, rather than using all aligned reads.

	Using --no_bipartite to omit bipartite motifs (e.g. AGCNNNNNNGTCT) from the control dictionary, only creating control values for contiguous motifs (e.g. CTGCAG). However, this will serious hamper the ability to assess the full richness of methylated motifs in the native sequencing data.

The output of this step is a pickled [https://docs.python.org/2/library/pickle.html] file (called control_means.pkl in the above example) containing a dictionary of the mean IPD values for all queried motifs in the WGA data. These can be manually inspected in a Python interactive shell using the following commands:

>import pickle
>control_means = pickle.load(open("control_means.pkl", "rb"))
>for motif,ipd in control_means.iteritems():
> print motif, ipd

Which should produce something similar to the following:

TAAGGA-5 0.22476
GGCAAG-4 -1.08934782609
ATANNNNNNTGCA-2 -0.306076923077
CTGATC-3 0.344641025641
ATANNNNNNTGCA-0 1.19992307692
ATTCGG-0 0.000526315789474
GTCTA-4 0.151090909091
.....

It is important that the WGA sequencing data used for this step is of at least moderate depth and sequence complexity in order to provide sufficient control data points across the full spectrum of possible motifs. In subsequent analyses, any motifs lacking control IPD values will be discarded from the analysis, so try to include all motifs in the control data if possible.

Detect methylated motifs with filtermotifs

Usage: filtermotifs [--help] [options] aligned_reads.cmp.h5

Examples:

Using a cmp.h5 file of aligned reads as input (recommended):
filtermotifs -i --procs=4 --contigs=reference.fasta --control_pkl_name=control_means.pkl aligned_reads.cmp.h5

Using a bas.h5 file of unaligned reads as input (not recommended):
filtermotifs -i --procs=4 --control_pkl_name=control_means.pkl m12345.bas.h5

Using a FOFN file of containing multiple files of bas.h5 unaligned reads as input (not recommended):
filtermotifs -i --procs=4 --control_pkl_name=control_means.pkl bas.h5.fofn

Options:
 -h, --help Show this help message and exit
 -d, --debug Increase verbosity of logging
 -i, --info Add basic logging
 --logFile=LOGFILE Write logging to file [log.controls]
 --procs=PROCS Number of cores to use [4]
 --contigs=CONTIGS Fasta file containing entries for the assembled contigs [None]
 --control_pkl_name=CONTROL_PKL_NAME Filename of control IPD data from WGA sequencing, generated using buildcontrols
 [control_ipds.pkl]
 --motifs_fn=MOTIFS_FN Filename to save output filtered motifs [motifs.txt]
 --N_reads=N_READS Number of reads to include for motif filtering [20000]
 --tmp=TMP Directory where numerous temporary files will be written [filter_tmp]
 --minAcc=MINACC Min subread accuracy of read [0.8]
 --minMapQV=MINMAPQV Min mapping QV of aligned read [240]
 --minReadScore=MINREADSCORE Min read score of an unaligned read [0.0]
 --maxPausiness=MAXPAUSINESS Max pausiness value of an unaligned read [1000]
 --subreadlength_min=SUBREADLENGTH_MIN Minimum subread length to include for analysis [100]
 --readlength_min=READLENGTH_MIN Minimum read length to include for analysis [100]
 --readlength_max=READLENGTH_MAX Maximum read length to include for analysis [10000000]
 --minQV=MINQV If base has QV < minQV, do not include [0]
 --min_kmer=MIN_KMER Minimum motif size to scan (contiguous motifs) [4]
 --max_kmer=MAX_KMER Maximum motif size to scan (contiguous motifs) [6]
 --no_bipartite Omit bipartite motifs [False]
 --bipart_first=BIPART_FIRST Bipartite motif configuration: acceptable length of first determinate component
 (comma-separated string of integers) [3,4]
 --bipart_Ns=BIPART_NS Bipartite motif configuration: acceptable length of middle indeterminate component
 (comma-separated string of integers) [5,6]
 --bipart_second=BIPART_SECOND Bipartite motif configuration: acceptable length of second determinate component
 (comma-separated string of integers) [3,4]
 --mod_bases=MOD_BASES String containing bases to query for mods ['A']
 --minMotifIPD=MINMOTIFIPD Min motif contig IPD for inclusion of motif in final set [1.7]
 --min_motif_reads=MIN_MOTIF_READS Min number of reads with motif hits to keep for motif filtering (only if using
 unaligned reads as input) [20]
 --min_motif_N=MIN_MOTIF_N Min number of motif IPD values required to keep for motif filtering [20]
 --cross_cov_bins=CROSS_COV_BINS Path to file containing binning results from CONCOCT. Will use to improve motif
 discovery. Only works with contig-level analysis (cmp.h5 input) inputs. File format
 should be '<contig_name>,<bin_id>' [None]

After the control IPD values have been tabulated and stored, methylated motifs can then detected in the HDF5 files of native, metagenomic sequencing data. Both aligned reads (cmp.h5) and unaligned reads (bas.h5 or FOFN containing multiple bas.h5 files) are supported as input, but the use of aligned reads is strongly recommended for motif filtering. Unaligned reads contain significant sequencing errors that introduce noise into the IPD signals for motifs, making it difficult to detect truly methylated motifs from unaligned reads.

filtermotifs -i --procs=4 --contigs=reference.fasta --control_pkl_name=control_means.pkl native_aligned_reads.cmp.h5

Unless otherwise specified (using --min_kmer, --max_kmer, --bipart_first, --bipart_Ns, --bipart_second, or --no_bipartite options), this procedure starts with motifs for which control data exists (--control_pkl_name) and discards all motifs that do not have a methylation score (native IPD - control IPD) greater than the value defined by --minMotifIPD.

The original query space of motifs is very large and can include several hundred thousand motifs if bipartite motifs are included (recommended). To ease computational demands for storing IPD data for all motifs in the query space, only a subset of reads (--N_reads) are examined from the input HDF5 files. This value of --N_reads can be modified according to available computational resources and acceptable running time.

The filtered motifs are written to the output file specified by --motifs_fn. Motifs are listed with the sequence string, followed by the 0-based index of the methylated base. For example, GATC-1 indicates that the A position in the motif is methylated. This --motifs_fn output file serves as input to methylprofiles, which constructs methylation profiles across the filtered motifs.

Build methylation profiles with methylprofiles

Usage: methylprofiles [--help] [options] input_hdf5 motifs.txt

Example:

Using a cmp.h5 file of aligned reads as input:
methylprofiles -i --procs=4 --control_pkl_name=control_means.pkl --contigs=reference.fasta aligned_reads.cmp.h5 motifs.txt

Using a bas.h5 file of unaligned reads as input:
methylprofiles -i --procs=4 --control_pkl_name=control_means.pkl m12345.bas.h5

Using a FOFN file of containing multiple files of bas.h5 unaligned reads as input:
methylprofiles -i --procs=4 --control_pkl_name=control_means.pkl bas.h5.fofn

Options:
 -h, --help show this help message and exit
 -d, --debug Increase verbosity of logging
 -i, --info Add basic logging
 --logFile=LOGFILE Write logging to file [log.controls]
 --prefix=PREFIX Prefix to use for output files [None]
 --tmp=TMP Directory where numerous temporary files will be written [profiles_tmp]
 --contigs=CONTIGS Fasta file containing entries for the assembled contigs [None]
 --minReadScore=MINREADSCORE Min read score of an unaligned read [0.0]
 --maxPausiness=MAXPAUSINESS Max pausiness value of an unaligned read [1000]
 --minQV=MINQV If base has QV < minQV, do not include [0]
 --subreadlength_min=SUBREADLENGTH_MIN Minimum subread length to include for analysis [100]
 --readlength_min=READLENGTH_MIN Minimum read length to include for analysis [100]
 --minContigLength=MINCONTIGLENGTH Min length of contig to consider [10000]
 --comp_kmer=COMP_KMER Kmer size to use for sequence composition measurements [5]
 --aligned_read_barcodes Also output features for individual aligned reads, not just
 contigs (requires cmp.h5 input) [False]
 --minAcc=MINACC Min subread accuracy of read [0.8]
 --minMapQV=MINMAPQV Min mapping QV of aligned read [240]
 --procs=PROCS Number of processors to use [4]
 --N_reads=N_READS Number of qualifying reads to include (from each bas.h5 if input is FOFN
 of bas.h5 files) in analysis [1000000000]
 --control_pkl_name=CONTROL_PKL_NAME Filename to save control IPD data from WGA sequencing [control_ipds.pkl]
 --subtract_control=SUBTRACT_CONTROL Subtract control IPDs in final calculations [True]
 --cross_cov_bins=CROSS_COV_BINS Path to file containing binning results from CONCOCT. Will use to improve
 motif discovery. Only works with contig-level analysis (cmp.h5 input) inputs.
 File format should be '<contig_name>,<bin_id>' [None]

methylprofiles compiles the methylation profiles across the motifs specified in the arguments. The methylation profiles can be constructed using either native contigs (*.cmp.h5) or unaligned reads (*.bas.h5), the latter of which can be supplied as a single bas.h5 file or a FOFN containing multiple *.bas.h5 files (each *bas.h5 file on a new line).

The output consists of three separate files containing methylation features, as well as other relevant features for binning:

	
	Methylation features: <prefix>_<seq>_methyl_features.txt

	
	Column 1: <seq> id

	Column 2: <seq> length

	Columns 3-M: Methylation scores (for M motifs)

	
	Motif counts: <prefix>_<seq>_motif_counts.txt

	
	Column 1: <seq> id

	Column 2: <seq> length

	Columns 3-M: Motif counts (for M motifs)

	
	Alternative features: <prefix>_<seq>_other_features.txt

	
	Column 1: <seq> id

	Column 2: <seq> length

	
	For dtype = read or align:

	
	Columns 3-N: k-mer frequencies (for N k-mers)

	
	For dtype = contig:

	
	Column 3: Contig coverage

	Columns 4-N: k-mer frequencies (for N k-mers)

Where <prefix> is defined by --prefix and <seq> is the sequence data type: contig, align, or read. When inputting *.cmp.h5 reads for methylation profiling, methylprofiles will always generate contig level features and will optionally generate align level features for the reads comprising each contig (using --aligned_read_barcodes). When *.bas.h5 reads are input, only read level features will be output.

For example, the following command with generate methylation (and other) profiles for a set of contigs contained in aligned_reads.cmp.h5:

methylprofiles -i --procs=4 --prefix=test --control_pkl_name=control_means.pkl --contigs=reference.fasta aligned_reads.cmp.h5 motifs.txt

These profiles will be contained in the following output files:

	test_contig_methyl_features.txt

	test_contig_motif_counts.txt

	test_contig_other_features.txt

Visualize feature landscape with mapfeatures

Usage: mapfeatures [--help] [options] <SEQ>_methyl_features.txt <SEQ>_other_features.txt

Examples:

mapfeatures -i --labels=<LABELS.txt> --size_markers contig_methyl_features.txt contig_other_features.txt

mapfeatures -i --labels=<LABELS.txt> --l_min=500 align_methyl_features.txt align_other_features.txt

mapfeatures -i --l_min=10000 --n_seqs=1000 read_methyl_features.txt read_other_features.txt

Options:
 -h, --help Show this help message and exit
 -d, --debug Increase verbosity of logging
 -i, --info Add basic logging
 --logFile=LOGFILE Write logging to file [log.controls]
 --prefix=PREFIX Prefix to use for output files [None]
 --size_markers Adjust marker size in plot according to sequence length [False]
 --dim_reduce=DIM_REDUCE Dimensionality reduction algorithm to apply (bhtsne or pca) [bhtsne]
 --labels=LABELS Tab-delimited file (no header) of sequence labels (seq_name\tlabel_name) [None]
 --l_min=L_MIN Minimum read length to include for analysis [0]
 --n_seqs=N_SEQS Number of sequences to subsample [all]
 --n_dims=N_DIMS Number of dimensions to reduce to for visualization (only n_dims=2 will be plotted) [2]
 --n_iters=N_ITERS Number of iterations to use for BH-tSNE [500]

mapfeatures visualizes the landscape of high-dimensional sequence features using the Barnes Hut approximation of t-SNE (PCA support coming soon). The sequence features that are output from methylprofiles are often high-dimensional (>3D), making it difficult to visualize the sequences. To ease this visualization for resolution of discrete sequence clusters in the feature space, t-SNE is used to reduce the dimensionality of the methylation, composition, and coverage features to 2D. The resulting 2D maps, which can be overlaid with sequence annotation labels (generated with Kraken [https://ccb.jhu.edu/software/kraken/], for instance), often reveals sequence clustering in the 2D feature space representing distinct taxonomical groups for binning.

Two files from methylprofiles serve as input to mapfeatures: <prefix>_<seq>_methyl_features.txt and <prefix>_<seq>_other_features.txt, which contain the high-dimensional methylation score features and coverage & composition features, respectively. As before, <prefix> is defined by --prefix and <seq> is the sequence data type: contig, align, or read.

For example, the command:

mapfeatures -i --labels=<LABELS.txt> --size_markers contig_methyl_features.txt contig_other_features.txt

Will generate three 2D t-SNE maps representing the contig feature space:

	Methylation t-SNE map: contig_methyl_features.bhtsne.png

	Composition t-SNE map: contig_other_features.comp.bhtsne.png

	Coverage+composition t-SNE map: contig_other_features.covcomp.bhtsne.png

Each file has an accompanying tab-delimited *.txt file containing the 2D coordinates from each t-SNE map that can be used for additional plotting purposes by the user. The file supplied to --labels must contain tab-delimited sequence labels for all sequences listed in the first column of the <seq>_methyl_features.txt and <seq>_other_features.txt files that are output from methylprofiles. Any sequences lacking annotation must be included using the label ‘Unlabeled’, for example:

	contig_1

	Bacteroides

	contig_2

	Clostridium

	contig_4

	Escherichia

	contig_5

	Bacteroides

	contig_6

	Unlabeled

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/fanglab/mbin/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

mbin could always use more documentation, whether as part of the
official mbin docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/fanglab/mbin/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up mbin for local development.

	Fork the mbin repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/mbin.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv mbin
$ cd mbin/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 mbin tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/fanglab/mbin/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_mbin

Index

Credits

Development Lead

	John Beaulaurier <john.beaulaurier@gmail.com>

Contributors

None yet. Why not be the first?

History

1.0.0 (2017-06-13)

	First release on PyPI.

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 mBin documentation

 		
 mBin overview

 		
 Documentation

 		
 Citations

 		
 Credits

 		
 Installation

 		
 Fundamental dependencies

 		
 Python packages

 		
 Setting up virtualenv

 		
 Installing mBin

 		
 Installing t-SNE

 		
 Usage

 		
 Extract control IPDs from WGA sequencing with buildcontrols

 		
 Detect methylated motifs with filtermotifs

 		
 Build methylation profiles with methylprofiles

 		
 Visualize feature landscape with mapfeatures

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

_static/up.png

_static/up-pressed.png

